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1. Introduction

→ Inception: Efron (1979)

→ Wide applications: Hall (1992), Efron and Tibshirani (1993), Shao
and Tu (1995), Davison and Hinkley (1997), Lahiri (2003a), ...

→ Basic idea

• How to measure the accuracy of an estimate θ̂n? It’s usually
difficult because of the unknown sampling distribution

• Bootstrap: we don’t need assumptions on the data generating
mechanism; just resample with replacement to reproduce the
estimators

• From θ → θ̂n → θ̂n

∗
(with corresponding concepts such as the

variance or α-quantile)
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→ The quality of the bootstrap approximation depends on the esti-

mator P̂n of the joint distribution Pn

→ Data structure: i.i.d or dependence

→ The indespensable role of the computer: highly involved with compu-
tation because of it’s difficult to derive the closed form analytical
expressions for the bootstrap estimators

→ Routine: first produce a large number of independent copies of θ̂n

∗
,

then we get the empirical distribution, which is a Monte-Carlo
approximation to the true bootstrap distribution
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2. Bootstrap for i.i.d Data

→ Sometimes bootstrap outperforms classical approaches

→ But a blind application of the bootstrap gives a wrong answer too
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2.1 Performance of the Bootstrap

Let Tn = tn(Xn; θ) be a random variable of interest, and a common example

is Tn = n
√

(X̄n − µ)/σ, where X̄n is the sample mean. The bootstrap ver-
sion of Tn based on a resample of size m is

Tm,n
∗ = tm(X1

∗,� , Xm
∗ ; θ̂n) = m

√
(X̄m

∗ − X̄n)/sn. (1)

When m = n, it can be shown that the bootstrap approximation is asymp-

totically consistent, and the rate is o(n−1/2) under some conditions1, which

is better than the rate of the classical normal approximation O(n−1/2).

Additional moment conditions may yield even more precise results.

The Problem with Delete-1 Jackknife

The variance estimator of the sample quantile is inconsistent!

1. This o(n−1/2) is called second order correctness.
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2.2 Superiority of Bootstrap May Not Always Hold

→ For lattice random variables, the bootstrap looses its second order
correctness.

→ When the variance is infinite, the certered and scaled sample mean
will converge to a random limit. However, after modifying the
resample size n to a smaller number, say, m, the inconsistency can
be overcome! (see Figure 1)
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Figure 1. Application of “m out of n” bootstrap in the case of infinite variance

(a stable distribution of order α ∈ (0, 2), here α = 0.8), contrasted by the usual “n

out of n” bootstrap. Actually this figure is only a snapshot.
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R Code for Figure 1:

> if (require(fBasics)) {

par(mfrow = c(2, 1), mar = c(3, 4, 2, 1))

x = rstable(n = 1000, alpha = 0.8, beta = 0)

n1 = length(x)

n2 = round(sqrt(length(x)))

d1 = replicate(50, sqrt(n1) * (mean(sample(x, size = n1,

rep = T)) - mean(x))/sd(x))

d2 = replicate(50, sqrt(n2) * (mean(sample(x, size = n2,

rep = T)) - mean(x))/sd(x))

while (T) {

plot(d1, type = "s", ylim = c(-3, 3), ylab = "Centered & Scaled Sample Mean",

cex.lab = 0.9)
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mtext("Resample n out of n", 3, 0.5, cex = 1.2)

abline(h = 0, lty = 2)

points(25, mean(d1), pch = 19)

d1 = c(d1[-1], sqrt(n1) * (mean(sample(x, size = n1,

rep = T)) - mean(x))/sd(x))

plot(d2, type = "s", ylim = c(-3, 3), ylab = "Centered & Scaled Sample Mean",

cex.lab = 0.9)

mtext(expression("Resample m out of n (m = " ~ sqrt(n) ~

")"), 3, 0.5, cex = 1.2)

abline(h = 0, lty = 2)

points(25, mean(d2), pch = 19)

d2 = c(d2[-1], sqrt(n2) * (mean(sample(x, size = n2,

rep = T)) - mean(x))/sd(x))

Sys.sleep(0.3)

}

}

The code above will create two animated pictures, if the package fBasics has
already been installed (because we have to generate random numbers fol-
lowing stable distribution using the function rstable()).
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3. Model Based Bootstrap

In practical applications, the i.i.d case is too primitive, thus various exten-
sions are explored.

i. multiple linear regression model

ii. stationary autoregressive process
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3.1 Multiple linear regression model

Suppose the data is generated by

Yi = xi

′

β + ǫi, i = 1,� , n. (2)

How to approximate the sampling distribution of Tn = An(β̂n − β)?

1. Compute the residuals ei = Yi − xi

′

β̂n, and center them as ẽi = (ei −
ēn), i = 1,� , n

2. Generate bootstrap error variabels ǫ1
∗, � , ǫn

∗ by resampling with
replacement from {ẽi: i = 1,� , n}

3. Define

Yi
∗= xi

′

β̂n + ǫi
∗, i = 1,� , n.

4. Get bootstrap version coefficients βn
∗, and consequently Tn

∗ = An(βn
∗ −

β̂n)
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3.2 Stationary autoregressive process

Consider an AR(1) model:

Xt = β1Xt−1 + ǫt, t = 0,± 1,± 2,� (3)

where β1∈ (− 1, 1). Let β̂1 denote the LSE of the above model.

1. Compute the residuals et = Xt − β̂1Xt−1, t = 2,� , n

2. Center them as in Section 3.1

3. Generate ǫt
∗, t= 2,� , n

4. Get a sequence of bootstrap observations X1
∗,� , Xn

∗ as

Xt
∗= β̂1Xt−1

∗ + ǫt
∗, t = 2,� , n. (4)

Notice: for unstable AR processes, the AR-bootstrap fails with the usual
choice of the resample size m = n, but works if m = o(n) as n→∞
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4. Block Bootstrap

→ One of the common drawbacks of model based bootstrap is that it’s
very sensitive to model misspecification! e.g. unstable time series

→ So we turn to a new approach to bootstrapping time series in the
absence of a model, i.e. block bootstrap

→ An obvious advantage: the dependence structure is preserved because
we resample blocks instead of single elements!

→ A critical question: how to get an optimal block size ℓ?

• explicit formulas for MSE-optimal block size: hard derivation
and extension

• Hall et al. (1995) method: use subsampling method to con-
struct an estimator of the MSE as a function of the block size
and then minimize

• Jackknife-after-bootstrap method
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Figure 2. An illustration of “Moving Block Bootstrap”; the blue points in the

three yellow rectangles (blocks) are bootstrap samples.
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> x = 5 * sin(seq(0, pi, length = 90)) + rnorm(90)

> plot(x, main = "Illustration of Moving Block Bootstrap (MBB)")

> for (idx in 1:(length(x) - 30 + 1)) {

rect(idx, min(x[idx:(idx + 30 - 1)]), idx + 30 - 1, max(x[idx:(idx +

30 - 1)]), border = "gray")

Sys.sleep(0.2)

}

> bt = sample(1:(length(x) - 30 + 1), 3, rep = T)

> for (b in bt) {

rect(b, min(x[b:(b + 30 - 1)]), b + 30 - 1, max(x[b:(b +

30 - 1)]), col = "yellow")

points(b:(b + 30 - 1), x[b:(b + 30 - 1)], col = "blue", pch = 19)

}
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5. Sieve Bootstrap

Construct a sequence of probability distributions {P̃n}n≥1 that forms a

sieve, i.e. the sequence {P̃n}n≥1 is such that for each n ≥ 1, P̃n−1 is a finer

approximation to P than P̃n and P̃n converges to P in a suitable sense.
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6. Transformation Based Bootstrap

Why transformation? – to build an appropriate structure, e.g. independent
structure.
Let θ ≡ θ(P ) be a parameter of interest depending on the joint distribution
P of the sequence {Xt}t∈Z. We want to approximate the sampling distribu-
tion of a statistic Rn = rn(Xn; θ).

1. Let Yn = hn(Xn) is a transformation of Xn such that the compo-
nents of Yn are approximately independent.

2. Suppose Rn can be expressed (or a close approximation) in terms of
Yn as Rn = r1n(Yn; θ) for some reasonable function r1n

3. Resample from a suitable sub-collection of {Yi} to generate boot-
strap observations Yn

∗, then approximate the distribution of Rn by
the transformation-based bootstrap (TrBB).
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