现代统计图形

谢益辉
爱荷华州立大学统计系

2010年6月14日

第三届中国R语言会议（北京）培训＠中国人民大学

大纲

（1）历史
（2）细节
－par（）
－plot（）
（3）元素

- 颜色
- 点
- 线
- 多边形
- 文本
- 图例
- 坐标轴
（4）图库
（5）系统
（6）模型
（7）其它
- 数学公式
- 图形设备
- 动画
- 交互式图形

图形的推断功能：霍乱传染之谜

Figure 1：John Snow的霍乱传染原因探索图

图形的描述功能：拿破仑的远征

Figure 2：Charles Joseph Minard的拿破仑远征图

基础图形系统（base graphics）

- 灵活
- 任何图形无非就是点线面构成的
- 基础图形系统为图形基础元素提供了详尽的设置
- 繁琐
- 挑剔的用户会觉得基础图形系统繁琐到无法忍受
- par（）就是这样一个恶魔

$\operatorname{par}()$ 的功能简介

- 参见《现代统计图形》书稿3．1节
- 演示示例

最常用的一个泛型函数： $\operatorname{plot}()$

- 什么是泛型函数（generic function）？
- 两个数值向量一散点图：plot．default（）
- 定制外观，演示示例
- 其它数据类型
- data．frame：散点图矩阵，例plot（iris）
- 数值型对因子型：箱线图，例plot（Petal．Width～Species，data ＝iris）
- 因子型：条形图，例plot（factor（c（1，1，2）））
- 很多R包都创造特有数据类型，扩充plot（）函数，用户使用起来更统一，例MASS包中的岭回归

颜色

－colors（）

- 颜色可以通过三种方式传达：
- 颜色名称，如red
- 整数：对应当前调色板palette（）
- 16进制的三个数字表示三原色：如\＃FF0000
- 简单示例
- 特定主题调色板，如heat．colors（）
－points（）
- 两种表达点的形状的方式：
- 整数
- 单个字符

折线，直线，线段，曲线

- 给定 x ，y 坐标连折线： $\operatorname{lines}()$
- 给定斜率和截距连直线：abline（）
- 给定 $\mathrm{x}, ~ \mathrm{y}$ 坐标连线段：segments（）（与折线的区别？）
- 给定x，y坐标连光滑曲线：xspline（）

矩形，多边形

－rect（），polygon（）

- 填充颜色，样式
- 边线

文本

－text（）
－mtext（）
－title（）
－legend（）

坐标轴

－axis（）

各类基础图形

- 一维原始数据：条形图，饼图，Cleveland点图，坐标轴须，带状图
- 散点图：散点图，向日葵散点图
- 曲线：函数曲线
- 密度和分布：直方图，茎叶图， QQ 图
- 汇总：箱线图，因素效应图
- 分类数据关联：关联图，马赛克图
- 分类对连续：条件密度图，棘状图
- 分类画图：协同图
- 三维图形：颜色图，等高线图，三维透视图，平滑散点图
- 高维散点图：散点图矩阵，符号图

其它图形（附加包）

- 地图
- 小提琴图（vioplot包，或lattice）
- 脸谱图（TeachingDemos包）
- 平行坐标图（lattice，或ggplot2）
- 调和曲线图（http：／／cos．name／2009／03／ parallel－coordinates－and－andrews－curve／）
－二维箱线图（aplpack包，bagplot（））

lattice

- 重要思想：根据变量分类画图
- 统一使用方法：参数为formula类型
- 设置繁琐无比，个人认为不方便，也不美观

ggplot2

- 图层叠加的概念，如同魔方
- 几何单位（Geom，点？线？光滑？）＋统计变换（Stat，直方图？ QQ图？）＋尺度表示（Scale，颜色渐变？元素大小？）＋坐标系 （Co－ord，笛卡尔？极坐标？）＋面板分类（Facet，根据分类变量分别画图）＋元素位置调整（Position，条形图并列或堆积？散点随机微小打乱？）
- 扩展了泛型函数：＋（使用非常形象）
- 细节设置自动化，例如图例

模型本身可能的局限

Figure 3：寻找二维大数据中隐藏的特征（更多演示： http：／／yihui．name／en／2008／09／to－see－a－circle－in－a－pile－of－sand／）

线性模型

- 一元回归：散点图，回归直线
- 多元回归
- 回归诊断

光滑方法

- 必杀技：lowess（）／loess（）
- 地图上的光滑

主成分分析和判别分析

－得分散点图

多维标度分析

－多维数据降维画散点图，保持距离的一致性

分类与回归树

－rpart包

图形中的数学公式标注

－expression（）
－demo（plotmath）

图形文件输出

－pdf（），postscript（）
－png（），jpeg（）
－高质量输出Cairo

k－Means聚类动态演示

Figure 4：k－Means聚类过程及离群点的影响（animation包中kmeans．ani（））

多元回归的控制变量

－回归初学者问题：为什么不拿因变量对每个自变量分别做回归？什么叫＂控制变量＂？

- 构造一个模拟的例子，看控制与不控制的效果，一目了然
- 思路：y 本来随 x 增大而减小，但加入控制变量 z 之后 y 看起来随 x 增大而增大
－效果：GGobi演示

关于作者

－主页：http：／／yihui．name
－Email：xie＠yihui．name
－COS论坛R版块：http：／／cos．name／cn／forum／15（若非与我个人相关的问题，请尽量发论坛）
－谢谢各位！

