统计图形和模拟视角下的模型理论解析

谢益辉
中国人民大学统计学院

2010年5月14日

大纲

（1）研究背景
（2）阐释模型理论
（3）探索模型应用
（4）小结与展望

解释理论：k－Means聚类

Figure 1：k－Means聚类的过程及离群点的影响（R包kmeans．ani（）函数）
－根据Friendly and Denis（2001）的记录，世界上最早的统计图形主要起源于地图：地理位置的导航和探索

- 统计理论兼具复杂性和实际意义：如何探索模型的理论？
- 统计图形：直观呈现理论解释，快速反映关键信息
- 统计模拟：通过计算的方式进行＂推导＂

统计图形的发展

- 200多年前饼图诞生 ${ }^{1}$
- 一个里程碑：Tukey（1977）的探索性数据分析，图形种类大大扩充，以探索数据为主
－接下来是计算机语言的发展，S语言为另一个里程碑：快捷的交互式数据分析（图形为一大支柱）
- 其它独立图形软件或R包
- 图形的计算机支持已非常便利（简单演示：library（rgl）； demo（bivar））
${ }^{1}$ 不过各种统计图形中，饼图可算是最糟糕的图形

统计模拟的意义

- Bootstrap方法的开篇作（Efron，1979）
- Simon（1997）的5000美金赌注
- 统计教学：模拟与计算能更快获得答案

模型本身的局限

Figure 2：寻找二维大数据中隐藏的特征（更多演示： http：／／yihui．name／en／2008／09／to－see－a－circle－in－a－pile－of－sand／）

异方差t检验中的自由度校正

－两样本t检验原本假设等方差，但在异方差的时候可用Welch校正调整t统计量的自由度，近似解决异方差问题

- 问题：使用或不使用Welch校正对检验有多大影响？
- 从理论推导入手也许能得到答案，而模拟会更快给出一组具体的答案：两组样本量的差异会影响检验结果的差异
－过程：生成两组异方差的随机数，分别用等方差和异方差的公式算 P 值，然后对比之

异方差t检验中的自由度校正（续）

－结果见论文中图2（样本量相等），图3（样本量不等）和图4（样本量差异对 P 值差异的影响）

- t检验的等方差假设条件在样本量差异较大的时候稳健性很差
- 模拟的思路清楚，操作简单易行：从假设条件直接计算结果

多元回归的控制变量

－回归初学者问题：为什么不拿因变量对每个自变量分别做回归？什么叫＂控制变量＂？

- 构造一个模拟的例子，看控制与不控制的效果，一目了然
- 思路：y 本来随 x 增大而减小，但加入控制变量 z 之后 y 看起来随 x 增大而增大
－效果：论文图5（及GGobi演示）

最小中位数平方回归的性质

- 稳健回归：避免离群点的影响
- 最小中位数平方回归：
$\hat{\boldsymbol{\beta}}=\arg \min _{\beta}$ median $\left\{\left(y_{i}-\hat{y}_{i}\right)^{2}\right\}, i=1,2, \cdots, n$
－它不总是优于最小二乘回归：对大量集中在数据中心的数据点非常敏感
- 模拟：生成大量集中在数据中心的数据
- 效果：论文图7
- 模拟一步到位，没有数学推导

多个离群点的诊断：Cook距离的局限

－问题：若数据中存在多个离群点，它们会互相掩护，传统的删除单个样本看拟合值或系数变化的测度将失效
－从重抽样或部分抽样的角度解决：既然一次删一个点不行，那么何不抽取样本的子集再拟合回归模型？

- 效果：论文图8（及网页动画）
- 计算的思路易于实施，在推公式之前不妨一试

关于神奇的 87.53%

- 用图形发现数据的特征，论文图9
- 理论与模型可后行

LOWESS平滑

- 线性模型带有很强的假设
- 通常的非线性模型仍然带有很强的假设
- 在这些模型之前，可以让数据＂自己说话＂：LOWESS是一种方法
- 通过简单的计算和图形，可以让数据更有效地＂说话＂
- 植物数目案例，论文图10

假设检验之外？

－假设检验本身是非常低效的数据分析工具：统计分析不是仅仅为了

- 个 P 值
- 可画图：箱线图，小提琴图等（论文图11，图12）
- 可模拟：重抽样，计算任意我们想知道的统计量（数学推导可能极其复杂）

Tukey首尾计数

- 手指头计算假设检验的方法（检验两样本均值的差异）
- 某工厂的6－sigma黑带极其重视
- 而一则模拟说明，它的稳健性可能很差（论文图14）
- 计算机如此发达，是否有必要推广手指头式的计算？
- 模拟：快速得到答案
- 图形：直观反映事实
- 现实：统计软件在输出报表，报表，报表……
- 问题：统计理论可否通过模拟和图形变得＂有趣＂？

展望

- 统计计算和模拟的潜力有待大力发掘
- 除了探索数据，我们也可以并且应该探索理论
- R语言？

参考文献

Efron B（1979）．＂Bootstrap methods：another look at the jackknife．＂The Annals of Statistics，7（1），1－26．

Friendly M，Denis DJ（2001）．Milestones in the history of thematic cartography， statistical graphics，and data visualization．Accessed：March 18，2010，URL http：／／www．math．yorku．ca／SCS／Gallery／milestone／．

Simon JL（1997）．Resampling：The New Statistics．2nd edition．Resampling Stats．URL http：／／www．resample．com／content／text／index．shtml．

Tukey JW（1977）．Exploratory data analysis．Massachusetts：Addison－Wesley．

