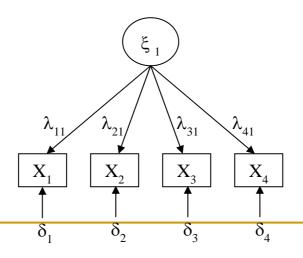
Structural Equation Modeling (SEM)

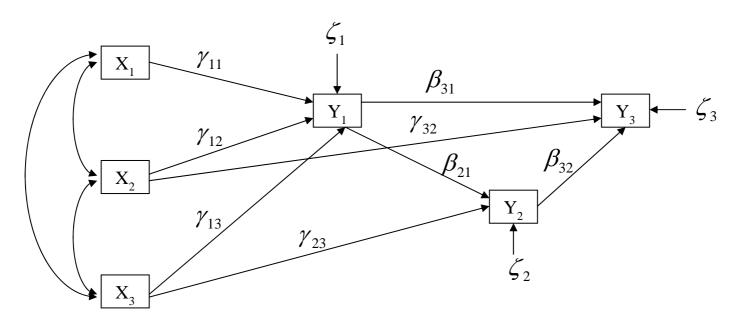
——An Overview of Theories & Applications

Outline

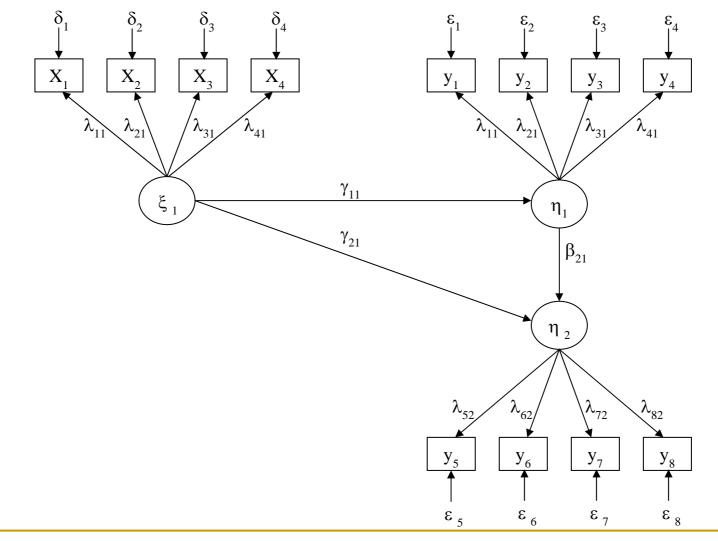

- Origin of SEM
- Problems Relevant to SEM
- Mathematical Statistics Issues
- Interpretations for the Outputs from SEM
- My Understanding of Statistics

1. Origin of SEM

- 1960s ~ 70s
- Two critical problems in social studies
 - Measurement ==> Latent Variables
 - Causal Relationship ==> Structural Model, Path Analysis, etc


1.1 Latent Variables

- Variables that can not be measured DIRECTLY; e.g. psychological motivations, moral level, intelligence, etc
 - Underlying factors measured by observed indicators
 - Errors of measurement also under consideration



1.2 Causal Model & Path Analysis

Regression models are too simple for social studies, especially when there are complex causal relationships!

1.3 A Typical Model

1.3 A Typical Model (cont.)

 It's also appropriate if you regard SEM as the combination of FACTOR ANALYSIS & PATH ANALYSIS

2. What does SEM do?

- Keep in mind that RELATIONSHIP is a keyword in SEM (my personal opinion)
- SEM solved two great obstacles in social studies, but it is NOT everything!
- SEM mainly focuses on causal relationships (as well as some measurement issues, just like factor analysis)

3. Mathematical Statistics Issues

- The form of SEM (consisted of two models)
- Derivation of parameter estimation (MLE as an example)

3.1 Two sub-models in SEM

Measurement Model

Structural Model

$$\eta = B\eta + \Gamma\xi + \zeta$$
 -----(3)

Some assumptions

3.2 Criterion for Parameter Estimation

- Actually, SEM is just a process of hypothesis testing.
 - Null hypothesis: $\Sigma = \Sigma(\theta)$
 - □ Alternative hypothesis: $\Sigma \neq \Sigma(\theta)$
- The aim of estimation is to minimize the difference between Σ and Σ (θ)

3.3 Maximum Likelihood Estimation

If the observed variables are normally distributed, we can use MLE to solve SEM.

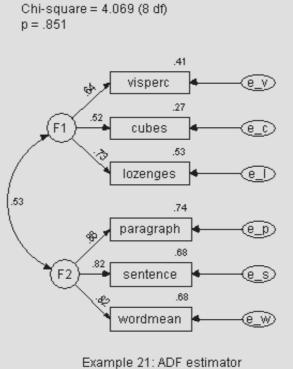
3.3 MLE (cont.)

$$\Sigma = \operatorname{Var}(z) = \operatorname{Var}[(y', x')']$$

$$= \begin{pmatrix} \operatorname{Cov}(y', y') & \operatorname{Cov}(y', x') \\ \operatorname{Cov}(x', y') & \operatorname{Cov}(x', x') \end{pmatrix}$$

$$= \begin{pmatrix} \Lambda_{y} A (\Gamma \Phi \Gamma' + \Psi) A' \Lambda'_{y} + \Phi_{\varepsilon} & \Lambda_{y} A \Gamma \Phi \Lambda'_{x} \\ \Lambda_{x} \Phi \Gamma' A' \Lambda'_{y} & \Lambda_{x} \Phi \Lambda'_{x} + \Phi_{\delta} \end{pmatrix}$$

Discrepancy Functions (Browne, 1984)


$\mathbf{F} = \operatorname{tr}(\mathbf{S}\boldsymbol{\Sigma}^{-1}) - (p+q) + \ln|\boldsymbol{\Sigma}| - \ln|\mathbf{S}|$

4. Interpretations for the Outputs

- What do we care most?
- Other indicators in the outputs

4.1 Outputs -- Coefficients

 Coefficients in SEM (unknown parameters estimated by various methods)

Restricted two-factor model Holzinger and Swineford (1939) data Standardized estimates

4.2 Other Indicators

x²-statistics (smaller value ==> better model)
 GFI, AGFI, RMR, etc

5. Something about Statistics

- Location of statistics in my mind -- A Useful Tool
- What does this "useful tool" do for us? -- Tell us some truths, but it's always hard! ...
- Statistics alone can NOT play all the game!
- Constraints of statistics (from a mathematical view)

5. Something about Statistics (cont.)

- Warnings about statistical software
- Contents of statistics
 - Descriptive statistics (mean, variance, mode, ...)
 - Correlation and Regression
 - Compare means (t-test and ANOVA, etc)
 - Cluster analysis
 - Factor analysis
 - Time series
 - ••••

Thanks!

Yihui XIE, School of Statistics

For further information, please visit http://www.yihui.name