
An Introduction to Support Vector Machine

and Implementation in R

Yihui Xie ∗

May 8, 2007

Abstract

Support vector machine (SVM) is a popular technique for classifica-
tion. This paper mainly focuses on the implementation of SVM in R,
besides, we’ll make some comparisons among SVM and other methods for
classification such as KNN and logistic regression.

1 Introduction

SVM (Support Vector Machine) is a useful technique for data classification.
Here we propose an easy approach which usually gives reasonable results, and
this preliminary guide is not for SVM researchers nor do we guarantee the best
accuracy. We also do not intend to solve challenging or difficult problems. Our
purpose is to give SVM novices a recipe to obtain acceptable results fast and
easily.

Here we briefly introduce SVM basics which are necessary for explaining our
procedure. A classification task usually involves with training and testing data
which consist of some data instances. Each instance in the training set contains
one “target value” (class labels) and several “attributes” (features). The goal
of SVM is to produce a model which predicts target value of data instances in
the testing set which are given only the attributes. The common approach is to
find a real value function1 g(x) in order that we can predict the classification
of y according to the sign of g(x). The “sign”, also known as the “discriminant
function”, is defined as follows:

sign(a) =

{
1 if a ≥ 0

−1 if a < 0
(1)

∗School of Statistics, Renmin University of China, Beijing, 100872, China; Email:
xieyihui(at)gmail.com; Web: http://www.yihui.name

1This just means a “rule”, which might be either linear (e.g. g(x) = wx + b) or nonlinear
– it depends on the data

1

http://www.yihui.name

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

(a)

x1

x2

2
* D

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

(b)

x1
x2

2
*

D

Figure 1: Selection of g(x) through maximizing D

First of all, let’s take a look at Figure 1, which is very intuitional for our
understanding in the process of finding the best g(x). The points annotated
by “+” and “o” are from two separate groups, and now the question is: how
to find a line to “divide” these points as far as possible? Before we introduce
any mathematical formulae, the reader should be able to judge by intuition that
the black line in Figure 1(a) is better than that in Figure 1(b). The reason is
simply that the former line separate these points farther than the latter one
– this is quite important in applications because it’s undesirable for a case
(with unknown class label) that can’t be classified into a group very definitely.
According to this consideration, we can also know that the line should be placed
just in the middle of the two groups’ margins. (Why?)

Now our task is clear: find a function g(x) (usually the actual task is to
obtain the coefficients) to maximize the distance2 D between two sample groups.
However, points in two groups cannot always be separated by just a single
straight line. In such overlapping cases, we’ll use slack variables to compute the
distance between the two margins, i.e. extract the distances denoted by slack
variables3 ξi from D first.

Next we’ll introduce the formal theory of SVM, taking the linear case of
SVM as an example. Here “linear” means g(x) = xT β + β0.

Mathematically speaking, the overall problem can be described by a linear
program as: given a training set of instance-label pairs (xi, yi), i = 1, · · · , N

2Sure, the actual distance is 2D (as annotated in Figure 1), but it is just the same to
maximize D

3For a point on the correct side of the straight line, ξi = 0

2

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

x1

x2

m
ax

 ∑
(D

− ξ i)

ξ1

ξ2

Figure 2: Points that are linearly inseparable by a straight line

where xi ∈ Rp and y ∈ {1,−1}N , the support vector machines (SVM) usually
require the solution of the following optimization problem:

max
β,β0,‖β‖=1

D

subject to yi(βT xi + β0) ≥ D, (2)
i = 1, · · · , N

With considerations of slack variables and by means of taking the dual pro-
gram, we can ultimately get an equivalent nonlinear program as:

min
β,β0,ξ

1
2
βT β + C

N∑

i=1

ξi

subject to yi(βT xi + β0) ≥ 1− ξi, (3)
ξi ≥ 0

3

It’s not difficult to generalize this linear program to the nonlinear case re-
placing xi with a nonlinear function φ(xi):

min
β,β0,ξ

1
2
βT β + C

N∑

i=1

ξi

subject to yi(βT φ(xi) + β0) ≥ 1− ξi, (4)
ξi ≥ 0

Here training vectors xi are mapped into a higher (maybe infinite) dimen-
sional space by the function φ(·). Then SVM finds a linear separating hyperplane
with the maximal margin in this higher dimensional space. C > 0 is the penalty
parameter of the error term. Furthermore, K(xi,xj) ≡ φ(xi)T φ(xj) is called
the kernel function. Though new kernels are being proposed by researchers,
beginners may find in SVM books the following four basic kernels, and here we
just one of them, i.e. radial basis function (RBF):

K(xi,xj) = exp(−γ‖xi − xj‖2), γ > 0 (5)

SVM novices may be confused by the concept “kernel function”, so what’s
the use of this function? In fact, this is just a tool for measuring similarity of
two sample cases. It’s quite natural that if an observation is more “similar” to
group 1 than group 2, we’ll classify it into group 1. Another question might be
“how does it come out”, and the answer can be found in Hastie et al (2001).
Here we just tell the reader that this kernel function rises from the solution
process of the above programs (Wolfe dual).

Actually the theory of SVM is not the critical part of our paper, there-
fore next we directly go on with issues concerning data analysis after a short
introduction of the package e1071 in R.

2 Relative Packages and Functions in R

The package e1071 offers an interface to the award-winning C++-implementation
by Chih-Chung Chang and Chih-Jen Lin, libsvm (current version: 2.6), featur-
ing:

• C- and ν-classification

• one-class-classification (novelty detection)

• ε- and ν-regression

and includes:

• linear, polynomial, radial basis function, and sigmoidal kernels

4

• formula interface

• k-fold cross validation

For further implementation details on libsvm, see Chang & Lin (2001).

The R interface to libsvm in package e1071, svm(), was designed to be as
intuitive as possible. Models are fitted and new data are predicted as usual,
and both the vector/matrix and the formula interface are implemented. As
expected for R’s statistical functions, the engine tries to be smart about the
mode to be chosen, using the dependent variable’s type (y): if y is a factor,
the engine switches to classification mode, otherwise, it behaves as a regression
machine; if y is omitted, the engine assumes a novelty detection task.

Below is the usage of svm():

S3 method for class ’formula’:
svm(formula, data = NULL, ..., subset, na.action =
na.omit, scale = TRUE)
Default S3 method:
svm(x, y = NULL, scale = TRUE, type = NULL, kernel =
"radial", degree = 3, gamma = if (is.vector(x)) 1 else 1 / ncol(x),
coef0 = 0, cost = 1, nu = 0.5,
class.weights = NULL, cachesize = 40, tolerance = 0.001, epsilon = 0.1,
shrinking = TRUE, cross = 0, probability = FALSE, fitted = TRUE,
..., subset, na.action = na.omit)

Later we’ll explain the most frequently used parameters in detail.

3 Dealing with “spam” Data

According to the suggestions by Chang & Lin (2001), below is a suitable pro-
cedure for beginners:

• Transform data to the format of an SVM software

• Conduct simple scaling on the data

• Consider the RBF kernel K(x,y) = e−γ‖x−y‖2

• Use cross-validation to find the best parameter C and γ

• Use the best parameter C and to train the whole training set

• Test

5

Considerations on data-scaling and kernel selection are simply omitted in
this paper (though they are very important) and we put our main efforts in the
implementation in R.

The “spam” data to be analyzed in this section comes from an R package
ElemStatLearn, which is already quite familiar to us. For background on spam
please refer to [4].

The last column of the data denotes whether the e-mail was considered spam
(1) or not (0), i.e. unsolicited commercial e-mail. Most of the attributes indicate
whether a particular word or character was frequently occurring in the e-mail.
The run-length attributes (55-57) measure the length of sequences of consecutive
capital letters. For the statistical measures of each attribute, see the end of this
file. Here are the definitions of the attributes4:

• 48 continuous real [0,100] attributes of type word_freq_WORD = percentage
of words in the e-mail that match WORD, i.e. 100 * (number of times
the WORD appears in the e-mail) / total number of words in e-mail. A
“word” in this case is any string of alphanumeric characters bounded by
non-alphanumeric characters or end-of-string.

• 6 continuous real [0,100] attributes of type char_freq_CHAR = percentage
of characters in the e-mail that match CHAR, i.e. 100 * (number of CHAR
occurences) / total characters in e-mail

• 1 continuous real [1, ...] attribute of type capital_run_length_average
= average length of uninterrupted sequences of capital letters

• 1 continuous integer [1, ...] attribute of type capital_run_length_longest
= length of longest uninterrupted sequence of capital letters

• 1 continuous integer [1, ...] attribute of type capital_run_length_total
= sum of length of uninterrupted sequences of capital letters = total num-
ber of capital letters in the e-mail

• 1 nominal {0, 1} class attribute of type spam = denotes whether the e-mail
was considered spam (1) or not (0), i.e. unsolicited commercial e-mail.

First of all, we may examine the structure of the data using the function
str() as follows:

> data(spam, package = "ElemStatLearn")
> str(spam)
’data.frame’: 4601 obs. of 58 variables:
$ A.1 : num 0 0.21 0.06 0 0 0 0 0 0.15 0.06 ...
$ A.2 : num 0.64 0.28 0 0 0 0 0 0 0 0.12 ...
$ A.3 : num 0.64 0.5 0.71 0 0 0 0 0 0.46 0.77 ...

4For detailed information about these words and characters, see Appendix A

6

$ A.4 : num 0 0 0 0 0 0 0 0 0 0 ...
$ A.5 : num 0.32 0.14 1.23 0.63 0.63 1.85 1.92 1.88 0.61 0.19 ...
$ A.6 : num 0 0.28 0.19 0 0 0 0 0 0 0.32 ...
$ A.7 : num 0 0.21 0.19 0.31 0.31 0 0 0 0.3 0.38 ...
$ A.8 : num 0 0.07 0.12 0.63 0.63 1.85 0 1.88 0 0 ...
$ A.9 : num 0 0 0.64 0.31 0.31 0 0 0 0.92 0.06 ...
$ A.10: num 0 0.94 0.25 0.63 0.63 0 0.64 0 0.76 0 ...
$ A.11: num 0 0.21 0.38 0.31 0.31 0 0.96 0 0.76 0 ...
$ A.12: num 0.64 0.79 0.45 0.31 0.31 0 1.28 0 0.92 0.64 ...
$ A.13: num 0 0.65 0.12 0.31 0.31 0 0 0 0 0.25 ...
$ A.14: num 0 0.21 0 0 0 0 0 0 0 0 ...
$ A.15: num 0 0.14 1.75 0 0 0 0 0 0 0.12 ...
$ A.16: num 0.32 0.14 0.06 0.31 0.31 0 0.96 0 0 0 ...
$ A.17: num 0 0.07 0.06 0 0 0 0 0 0 0 ...
$ A.18: num 1.29 0.28 1.03 0 0 0 0.32 0 0.15 0.12 ...
$ A.19: num 1.93 3.47 1.36 3.18 3.18 0 3.85 0 1.23 1.67 ...
$ A.20: num 0 0 0.32 0 0 0 0 0 3.53 0.06 ...
$ A.21: num 0.96 1.59 0.51 0.31 0.31 0 0.64 0 2 0.71 ...
$ A.22: num 0 0 0 0 0 0 0 0 0 0 ...
$ A.23: num 0 0.43 1.16 0 0 0 0 0 0 0.19 ...
$ A.24: num 0 0.43 0.06 0 0 0 0 0 0.15 0 ...
$ A.25: num 0 0 0 0 0 0 0 0 0 0 ...
$ A.26: num 0 0 0 0 0 0 0 0 0 0 ...
$ A.27: num 0 0 0 0 0 0 0 0 0 0 ...
$ A.28: num 0 0 0 0 0 0 0 0 0 0 ...
$ A.29: num 0 0 0 0 0 0 0 0 0 0 ...
$ A.30: num 0 0 0 0 0 0 0 0 0 0 ...
$ A.31: num 0 0 0 0 0 0 0 0 0 0 ...
$ A.32: num 0 0 0 0 0 0 0 0 0 0 ...
$ A.33: num 0 0 0 0 0 0 0 0 0.15 0 ...
$ A.34: num 0 0 0 0 0 0 0 0 0 0 ...
$ A.35: num 0 0 0 0 0 0 0 0 0 0 ...
$ A.36: num 0 0 0 0 0 0 0 0 0 0 ...
$ A.37: num 0 0.07 0 0 0 0 0 0 0 0 ...
$ A.38: num 0 0 0 0 0 0 0 0 0 0 ...
$ A.39: num 0 0 0 0 0 0 0 0 0 0 ...
$ A.40: num 0 0 0.06 0 0 0 0 0 0 0 ...
$ A.41: num 0 0 0 0 0 0 0 0 0 0 ...
$ A.42: num 0 0 0 0 0 0 0 0 0 0 ...
$ A.43: num 0 0 0.12 0 0 0 0 0 0.3 0 ...
$ A.44: num 0 0 0 0 0 0 0 0 0 0.06 ...
$ A.45: num 0 0 0.06 0 0 0 0 0 0 0 ...
$ A.46: num 0 0 0.06 0 0 0 0 0 0 0 ...
$ A.47: num 0 0 0 0 0 0 0 0 0 0 ...
$ A.48: num 0 0 0 0 0 0 0 0 0 0 ...
$ A.49: num 0 0 0.01 0 0 0 0 0 0 0.04 ...

7

−29.8

 −4.0
 0.0
 4.0

 37.0

Pearson
residuals:

p−value =
< 2.22e−16

obs

p
re

d
sp

am
em

ai
l

email spam

Figure 3: Predictions v.s. Observations: A Mosaicplot

$ A.50: num 0 0.132 0.143 0.137 0.135 0.223 0.054 0.206 ...
$ A.51: num 0 0 0 0 0 0 0 0 0 0 ...
$ A.52: num 0.778 0.372 0.276 0.137 0.135 0 0.164 0 0.181 ...
$ A.53: num 0 0.18 0.184 0 0 0 0.054 0 0.203 0.081 ...
$ A.54: num 0 0.048 0.01 0 0 0 0 0 0.022 0 ...
$ A.55: num 3.76 5.11 9.82 3.54 3.54 ...
$ A.56: int 61 101 485 40 40 15 4 11 445 43 ...
$ A.57: int 278 1028 2259 191 191 54 112 49 1257 749 ...
$ spam: Factor w/ 2 levels "email","spam": 2 2 2 2 2 2 2 2 2 2 ...

As for the function svm(), we only need to pay attention to two parameters,
i.e. cost and gamma, which correspond to C and γ in equation (3), (4) and
(5) respectively. If we want to perform a k-fold cross-validation to assess the
quality of the model, we may as well specify the parameter cross as k.

After a SVM model is constructed, we should check the quality first, and the
conventional way may be a contingency table with original classes and predicted
ones – this is the case when cross-validation is not performed, otherwise we can
assess the quality by the output of a k-fold cross-validation.

Here are some very ordinary codes for SVM modeling:

8

> if (require(ElemStatLearn) & require(e1071)) {
> data(spam)
> model = svm(spam ~ ., data = spam)
> summary(model)

Call:
svm(formula = spam ~ ., data = spam)

Parameters:
SVM-Type: C-classification

SVM-Kernel: radial
cost: 1

gamma: 0.01754386

Number of Support Vectors: 1275

(595 680)

Number of Classes: 2

Levels:
email spam

> pred = fitted(model)
> obs = spam$spam
> table(pred, obs)

obs
pred email spam
email 2697 151
spam 91 1662

> model = svm(spam ~ ., data = spam, cross = 10)
> summary(model)

Call:
svm(formula = spam ~ ., data = spam, cross = 10)

Parameters:
SVM-Type: C-classification

SVM-Kernel: radial
cost: 1

gamma: 0.01754386

9

Number of Support Vectors: 1275

(595 680)

Number of Classes: 2

Levels:
email spam

10-fold cross-validation on training data:

Total Accuracy: 93.08846
Single Accuracies:
94.13043 95 91.95652 93.47826 92.6087 93.26087
90 92.82609 96.30435 91.32321

> library(vcd)
> mosaic(table(pred, obs), shade = TRUE)
}

From the results above, we can know that the approximate accuracy5 is
(2697+1662)/4601 ≈ 94.74% when no cross-validation is performed, and 93.09%
with a 10-fold cross-validation. Here we only used the RBF kernel, and in section
4 we’ll check the results by other kernels.

4 Comparisons

This section mainly discusses different performances of SVM, logistic regression
and KNN in classification problems. Restricted by the relatively poor computing
ability of our computers, we finally decide to select only a subset of variables as
demonstrations to finish the comparisons.

As for the rule of variable selection, we may use AIC or Cp-statistic, etc,
but here we just choose two most significant variables by hand. This seems to
be not quite reasonable from the statistical view, but is fairly convenient for
presentation.

4.1 Logistic Regression

As we know, logistic regression is just a special case of generalized linear model:
we just have to specify a binomial family and a logit link function. So it’s quite

5Figure 3 is a visual display for the accuracy of predictions

10

easy to perform this regression in R. Let’s check the result of logistic regression
first:

> m = glm(spam ~., data = spam, family=binomial)
> summary(m)

Call:
glm(formula = spam ~ ., family = binomial, data = spam)

Deviance Residuals:
Min 1Q Median 3Q Max

-4.127e+00 -2.030e-01 -1.967e-06 1.140e-01 5.364e+00

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.569e+00 1.420e-01 -11.044 < 2e-16 ***
A.1 -3.895e-01 2.315e-01 -1.683 0.092388 .
A.2 -1.458e-01 6.928e-02 -2.104 0.035362 *
A.3 1.141e-01 1.103e-01 1.035 0.300759
A.4 2.252e+00 1.507e+00 1.494 0.135168
A.5 5.624e-01 1.018e-01 5.524 3.31e-08 ***
A.6 8.830e-01 2.498e-01 3.534 0.000409 ***
A.7 2.279e+00 3.328e-01 6.846 7.57e-12 ***
A.8 5.696e-01 1.682e-01 3.387 0.000707 ***
A.9 7.343e-01 2.849e-01 2.577 0.009958 **
A.10 1.275e-01 7.262e-02 1.755 0.079230 .
A.11 -2.557e-01 2.979e-01 -0.858 0.390655
A.12 -1.383e-01 7.405e-02 -1.868 0.061773 .
A.13 -7.961e-02 2.303e-01 -0.346 0.729557
A.14 1.447e-01 1.364e-01 1.061 0.288855
A.15 1.236e+00 7.254e-01 1.704 0.088370 .
A.16 1.039e+00 1.457e-01 7.128 1.01e-12 ***
A.17 9.599e-01 2.251e-01 4.264 2.01e-05 ***
A.18 1.203e-01 1.172e-01 1.027 0.304533
A.19 8.131e-02 3.505e-02 2.320 0.020334 *
A.20 1.047e+00 5.383e-01 1.946 0.051675 .
A.21 2.419e-01 5.243e-02 4.615 3.94e-06 ***
A.22 2.013e-01 1.627e-01 1.238 0.215838
A.23 2.245e+00 4.714e-01 4.762 1.91e-06 ***
A.24 4.264e-01 1.621e-01 2.630 0.008535 **
A.25 -1.920e+00 3.128e-01 -6.139 8.31e-10 ***
A.26 -1.040e+00 4.396e-01 -2.366 0.017966 *
A.27 -1.177e+01 2.113e+00 -5.569 2.57e-08 ***
A.28 4.454e-01 1.991e-01 2.237 0.025255 *
A.29 -2.486e+00 1.502e+00 -1.656 0.097744 .
A.30 -3.299e-01 3.137e-01 -1.052 0.292972

11

A.31 -1.702e-01 4.815e-01 -0.353 0.723742
A.32 2.549e+00 3.283e+00 0.776 0.437566
A.33 -7.383e-01 3.117e-01 -2.369 0.017842 *
A.34 6.679e-01 1.601e+00 0.417 0.676490
A.35 -2.055e+00 7.883e-01 -2.607 0.009124 **
A.36 9.237e-01 3.091e-01 2.989 0.002803 **
A.37 4.651e-02 1.754e-01 0.265 0.790819
A.38 -5.968e-01 4.232e-01 -1.410 0.158473
A.39 -8.650e-01 3.828e-01 -2.260 0.023844 *
A.40 -3.046e-01 3.636e-01 -0.838 0.402215
A.41 -4.505e+01 2.660e+01 -1.694 0.090333 .
A.42 -2.689e+00 8.384e-01 -3.207 0.001342 **
A.43 -1.247e+00 8.064e-01 -1.547 0.121978
A.44 -1.573e+00 5.292e-01 -2.973 0.002953 **
A.45 -7.923e-01 1.556e-01 -5.091 3.56e-07 ***
A.46 -1.459e+00 2.686e-01 -5.434 5.52e-08 ***
A.47 -2.326e+00 1.659e+00 -1.402 0.160958
A.48 -4.016e+00 1.611e+00 -2.493 0.012672 *
A.49 -1.291e+00 4.422e-01 -2.920 0.003503 **
A.50 -1.881e-01 2.494e-01 -0.754 0.450663
A.51 -6.574e-01 8.383e-01 -0.784 0.432914
A.52 3.472e-01 8.926e-02 3.890 0.000100 ***
A.53 5.336e+00 7.064e-01 7.553 4.24e-14 ***
A.54 2.403e+00 1.113e+00 2.159 0.030883 *
A.55 1.199e-02 1.884e-02 0.636 0.524509
A.56 9.118e-03 2.521e-03 3.618 0.000297 ***
A.57 8.437e-04 2.251e-04 3.747 0.000179 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6170.2 on 4600 degrees of freedom
Residual deviance: 1815.8 on 4543 degrees of freedom
AIC: 1931.8

Number of Fisher Scoring iterations: 13

Obviously, there’re many variables that are not significant, and now we
just select Next we select A.53 (the frequency of the character “$”) and A.16
(the frequency of the word “free”) for further research. Certainly we may use
the function step() to perform a stepwise logistic regression, but it’s too time-
consuming for our computers.

Figure 4 shows how the email types depend on two variables, namely the
frequency of the word “free” and the character “$”. It’s not difficult to find out
that normal emails almost contain neither “free” nor “$”.

12

0 5 10 15 20

0
1

2
3

4
5

6

’free’, ’$’ and spam

Frequency of word ’free’

F
re

qu
en

cy
 o

f c
ha

ra
ct

er
 ’$

’ email
spam

0 1 2 3 4 5 6 7
0.

0
0.

5
1.

0
1.

5

A Closer Look

Frequency of word ’free’

F
re

qu
en

cy
 o

f c
ha

ra
ct

er
 ’$

’

Figure 4: Relationships between the frequencies of “free” & “$” and spam emails

Again we fit a logistic regression model but only use A.53 and A.16.

> m2 = glm(spam ~ A.16 + A.53, data = spam, family = binomial,
+ control = glm.control(maxit = 50))
> summary(m2)

Call:
glm(formula = spam ~ A.16 + A.53, family = binomial, data = spam,

control = glm.control(maxit = 50))

Deviance Residuals:
Min 1Q Median 3Q Max

-7.5403 -0.6732 -0.6732 0.6202 1.7865

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.36921 0.04368 -31.35 <2e-16 ***
A.16 1.48985 0.09699 15.36 <2e-16 ***
A.53 13.88779 0.62472 22.23 <2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

13

Null deviance: 6170.2 on 4600 degrees of freedom
Residual deviance: 4425.5 on 4598 degrees of freedom
AIC: 4431.5

Number of Fisher Scoring iterations: 33

Please note that why we use the parameter control here.

If we choose 0.5 as a cut point, the accuracy of classification can be computed
as follows:

table(predict(m2, type = "response") > 0.5, spam$spam)

email spam
FALSE 2640 703
TRUE 148 1110

The proportion of emails being correctly classified is (2640 + 1110)/4601 ≈
81.50%, and now we may as well check the performance of SVM again:

> model1 = svm(spam ~ A.16 + A.53, data = spam)
> pred = fitted(model1)
> obs = spam$spam
> table(pred, obs)

obs
pred email spam
email 2507 467
spam 281 1346

The accuracy is (2507 + 1346)/4601 ≈ 83.74%, which seems to be better
than logistic regression. When we perform cross-validations, the accuracy rate
of SVM is still higher.

> tr = sample(4601, 2300)
> m = glm(spam ~ A.16 + A.53, data = spam[tr,], family = binomial,

control = glm.control(maxit = 50))
> (r = table(predict(m, newdata = spam[-tr,], type = "response") >

0.5, (spam[-tr,])$spam))

email spam
FALSE 1306 359
TRUE 74 562

> model = svm(spam ~ A.16 + A.53, data = spam[tr,])
> pred = predict(model, spam[-tr,])

14

> obs = spam[-tr,]$spam
> (res = table(pred, obs))

obs
pred email spam
email 1252 255
spam 128 666

> print((r[1] + r[4])/sum(r))
[1] 0.811821
> print((res[1] + res[4])/sum(res))
[1] 0.8335506

4.2 k-Nearest Neighbour (KNN) Classification

The function for k-Nearest Neighbour Classification is knn() in the package
class. The basic usage is:

knn(train, test, cl, k = 1, l = 0, prob = FALSE, use.all = TRUE)

Here we just use the same training set cases with the former comparison and
set the number of neighbours considered as 1, which is the default value of the
parameter k.

> library(class)
> k = knn(spam[tr, -58], spam[-tr, -58], spam$spam[tr])
> res = table(k, spam$spam[-tr])

email spam
email 1160 224
spam 229 688

> print((res[1] + res[4])/sum(res))
[1] 0.803129

The accuracy rate is 80.3% – obviously it’s worse than the performance in
either logistic regression or SVM. However, please note that we didn’t consider
other values of the parameter k, so the conclusion is not that definite.

Judging from the above two cases of comparison, it seems that SVMs outgo
the other two methods in the classification of spam emails.

5 Parameter Selection

In former texts we didn’t mention the problem of parameter selection for SVMs,
and in fact it is also an important aspect for the applications. If we choose the

15

0.1626

0.1628

0.1630

0.1632

0.1634

1.96 1.98 2.00 2.02 2.04

0.26

0.28

0.30

0.32

0.34

Performance of ‘svm’

gamma

co
st

Figure 5: Parameter selection using grid search

RBF kernel, we’ll only have two parameters which can be changed by hand:
gamma and cost. Actually there’s a good method for selecting proper values
of them, which is called “grid search ”, i.e. to search for the values of certain
parameters over supplied parameter ranges. Such work can be done through the
function tune() in the package e1071. Here is the usage:

tune(method, train.x, train.y = NULL, data = list(), validation.x =
NULL, validation.y = NULL, ranges = NULL, predict.func = predict,
tunecontrol = tune.control(), ...)

Since we have just two uncertain parameters, this search can be visualized
in a 2-D graph just like Figure 5. The depth of the blue color in Figure 5 stands
for the prediction error with corresponding parameter values. It’s not difficult
to find out that the (probably) most optimal values for gamma and cost lies in
the right-bottom corner, and the numbers are listed in the following codes:

> obj = tune(svm, spam ~ A.16 + A.53, data = spam,

16

ranges = list(gamma = c(1.95, 2.05), cost = c(0.25, 0.35)))
> summary(obj)

Parameter tuning of ‘svm’:

- sampling method: 10-fold cross validation

- best parameters:
gamma cost
2.05 0.25

- best performance: 0.1625942

- Detailed performance results:
gamma cost error

1 1.95 0.25 0.1628111
2 2.05 0.25 0.1625942
3 1.95 0.35 0.1630299
4 2.05 0.35 0.1634657
> plot(obj)

A Variable names in spam data

All the variable names are listed as follows (in the same order as variable labels
A.1, A.2, ...):

word_freq_make; word_freq_address; word_freq_all;
word_freq_3d; word_freq_our; word_freq_over;
word_freq_remove; word_freq_internet; word_freq_order;
word_freq_mail; word_freq_receive; word_freq_will;
word_freq_people; word_freq_report; word_freq_addresses;
word_freq_free; word_freq_business; word_freq_email;
word_freq_you; word_freq_credit; word_freq_your;
word_freq_font; word_freq_000; word_freq_money;
word_freq_hp; word_freq_hpl; word_freq_george;
word_freq_650; word_freq_lab; word_freq_labs;
word_freq_telnet;word_freq_857; word_freq_data;
word_freq_415; word_freq_85; word_freq_technology;
word_freq_1999; word_freq_parts;word_freq_pm;
word_freq_direct; word_freq_cs; word_freq_meeting;
word_freq_original; word_freq_project;
word_freq_re; word_freq_edu; word_freq_table;
word_freq_conference;

char_freq_; char_freq_(; char_freq_[;

17

char_freq_!; char_freq_$; char_freq_#;

capital_run_length_average;
capital_run_length_longest;
capital_run_length_total;

References

[1] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference and Prediction. Springer, 2001.

[2] Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support
vector machines, 2001. Software available at http://www.csie.ntu.edu.
tw/~cjlin/libsvm

[3] Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998). UCI Repos-
itory of machine learning databases http://www.ics.uci.edu/~mlearn/
MLRepository.html. Irvine, CA: University of California, Department of
Information and Computer Science.

[4] Cranor, Lorrie F., LaMacchia, Brian A. Spam! Communications of the
ACM, 41(8):74-83, 1998

18

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html

	Introduction
	Relative Packages and Functions in R
	Dealing with ``spam'' Data
	Comparisons
	Logistic Regression
	k-Nearest Neighbour (KNN) Classification

	Parameter Selection
	Variable names in spam data

