cranvas: Building from Plumbing and Painting

Yihui Xie

Department of Statistics, Iowa State University

May 16, 2012

Introduction to cranvas
Demo

- old problems (with new look) in cranvas
Looking back

- standalone software packages: GGobi [Swayne et al., 2003], MANET [Unwin et al., 1996] and Mondrian [Theus, 2002], etc
• R itself has poor support for interactivity (ancient `locate()`? `getGraphicsEvent()`? no kidding! there is a **fun** package [Xie et al., 2011], and also **sudoku**)

• R packages: **iplots** [Urbanek and Wichtray, 2011], **rggobi**, **playwith**, **rgl**...
Overview of cranvas

- the name (CRAN + canvas ⇒ cranvas)

- next generation of GGobi (and more)
 - interactive statistical graphics in R
 - focus on speed, flexibility and elegance

- infrastructures (details later):
 - painting (drawing): `qtbase` & `qtpaint` (connect R with Qt)
— data structure: `plumbr & objectSignals` (mutaframes, reference classes, signals)
— aesthetics: `scales` (and other `ggplot2`’s friends)

• all available at http://github.com/ggobi (most are on CRAN)
— refer to the wiki for installation under Linux & Mac
— Windows version not available at the moment

• usage

— create a data object: `mf <- qdata(df)`
— make a series of plots based on it: `qhist(x1, data = mf); qscatter(x2, x3, data = mf)`
• cranvas is still under active development
 – currently it is like an interactive version of R base graphics
Data structure: augmented data

```r
library(cranvas)
data(flea, package = "tourr")
head(flea)  # first 6 rows of flea
```

```
tars1 tars2 head aede1 aede2 aede3 species
1 191 131 53 150 15 104 Concinna
2 185 134 50 147 13 105 Concinna
3 200 137 52 144 14 102 Concinna
4 173 127 50 144 16 97 Concinna
5 171 118 49 153 13 106 Concinna
6 160 118 47 140 15 99 Concinna
```

```r
str(flea)
```

May 16, 2012
'data.frame': 74 obs. of 7 variables:
$ tars1 : int 191 185 200 173 171 160 188 186 174
 163 ...
$ tars2 : int 131 134 137 127 118 118 134 129 131
 115 ...
$ head : int 53 50 52 50 49 47 54 51 52 47 ...
$ aede1 : int 150 147 144 144 153 140 151 143 144
 142 ...
$ aede2 : int 15 13 14 16 13 15 14 14 14 15 ...
$ aede3 : int 104 105 102 97 106 99 98 110 116 95
 ...
$ species: Factor w/ 3 levels "Concinna ","Heikert.
 ",...: 1 1 1 1 1 1 1 1 1 1 ...

def qflea <- qdata(flea, color = species)
def head(qflea) # what is the difference?
<table>
<thead>
<tr>
<th>tars1</th>
<th>tars2</th>
<th>head</th>
<th>aede1</th>
<th>aede2</th>
<th>aede3</th>
<th>species</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>191</td>
<td>131</td>
<td>53</td>
<td>150</td>
<td>15</td>
<td>104</td>
</tr>
<tr>
<td>2</td>
<td>185</td>
<td>134</td>
<td>50</td>
<td>147</td>
<td>13</td>
<td>105</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>137</td>
<td>52</td>
<td>144</td>
<td>14</td>
<td>102</td>
</tr>
<tr>
<td>4</td>
<td>173</td>
<td>127</td>
<td>50</td>
<td>144</td>
<td>16</td>
<td>97</td>
</tr>
<tr>
<td>5</td>
<td>171</td>
<td>118</td>
<td>49</td>
<td>153</td>
<td>13</td>
<td>106</td>
</tr>
<tr>
<td>6</td>
<td>160</td>
<td>118</td>
<td>47</td>
<td>140</td>
<td>15</td>
<td>99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>.brushed</th>
<th>.visible</th>
<th>.color</th>
<th>.border</th>
<th>.size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FALSE</td>
<td>TRUE</td>
<td>#F8766D</td>
<td>#F8766D</td>
</tr>
<tr>
<td>2</td>
<td>FALSE</td>
<td>TRUE</td>
<td>#F8766D</td>
<td>#F8766D</td>
</tr>
<tr>
<td>3</td>
<td>FALSE</td>
<td>TRUE</td>
<td>#F8766D</td>
<td>#F8766D</td>
</tr>
<tr>
<td>4</td>
<td>FALSE</td>
<td>TRUE</td>
<td>#F8766D</td>
<td>#F8766D</td>
</tr>
<tr>
<td>5</td>
<td>FALSE</td>
<td>TRUE</td>
<td>#F8766D</td>
<td>#F8766D</td>
</tr>
<tr>
<td>6</td>
<td>FALSE</td>
<td>TRUE</td>
<td>#F8766D</td>
<td>#F8766D</td>
</tr>
</tbody>
</table>
• the augmented data contains information about each observation (row)
 – .brushed: logical vector – whether a row is brushed or not
 – .visible: similar – visible or not?
 – .color, .border, .size – aesthetics of graphical elements
Data structure: mutaframe

- what we created by `qdata()` was a mutaframe (using `plumbr`)

- a mutaframe is like a data frame, but is mutable (technically, it is an environment)

```r
str(qflea, max.level = 1)

Classes 'mutaframe', 'environment' <environment: 0 x629d630>
- attr(*, "col.names")= chr [1:12] "tars1" "tars2" "head" "aede1" ...
```
- attr(*, "row.names")= chr [1:74] "1" "2" "3" "4"
 ...
- attr(*, "changed")=Reference class 'Signal' [package "objectSignals"] with 7 fields
 ..and 18 methods, of which 7 are possibly relevant
- attr(*, "Brush")=Reference class 'BRUSH' [package "cranvas"] with 80 fields
 ..and 11 methods, - attr(*, "Link")=Classes 'mutilalist', 'environment' <environment: 0x6c87358 >
 ..- attr(*, "envNames")= chr [1:3] "linkid" "linkvar" "type"
 ..- attr(*, "userNames")= chr [1:3] "linkid" "linkvar" "type"
- attr(*, "Scales")=Reference class 'Scales_meta' [package "cranvas"] with 15 fields
..and 11 methods, - attr(*, "Generator")= chr "d38bbe46dae5fa45758f3609f5dc1a0a"

- modification to a mutaframe is always “global”, which enables us to pass and modify a mutaframe anywhere in functions
 — application to tour (projections always changing, and the plot needs to know this)

```r
a ← 10  # ordinary R object
b ← a
b ← 5
a  # certainly a is not modified

[1] 10
```
but mutaframes are different

```r
x <- qflea  # assign qflea to x
qflea$tars1[1]  # first element of tars1

[1] 191
```

```r
x$tars1[1]  # same element in x

[1] 191
```

```r
x$tars1[1] <- 300  # modify it
x$tars1[1]

[1] 300
```

```r
qflea$tars1[1]  # original copy also modified!

[1] 300
```
Data structure: listeners

• how does interaction work?
 – interaction does not modify the plot directly
 – instead, it modifies data and triggers listeners on data, which do
 the job of updating the plot
 – it makes developers’ life a lot easier

• what is a listener?
 – it is a function attached to a mutaframe
(roughly speaking) whenever the mutaframe is modified, the function is executed

- which part of the mutaframe is modified?

 - we should not abuse the listeners, hence comes the concept of the “data pipeline”

 - .brushed changed? update the brush layer!
 - .visible changed? update the main plot layer!
 - original data changed? go back to the beginning and re-calculate everything, then update all the layers!

- each time we create a plot, a listener is attached to the mutaframe
— so the `.brushed` column can update several plots at the same time
Data structure: a summary

a data object is sitting behind the scene; interactions change the data; listeners on the data update the plot(s)
Interaction: brushing or selection

• mouse interactions
 – left click and move the brush; right click to resize the brush;
 middle button to toggle between brush and selection
 – brush mode and identify mode (use ? to toggle)

• selection mode
 – AND, OR, XOR, NOT, COMPLEMENT (use the initial letters)

• related keyboard interactions
– Delete makes elements invisible; F5: all visible
Interaction: linking

- one-to-one linking
 - brush one observation in this plot, highlight the same observation in other plots

- categorical linking
 - ..., all observations in the same category are brushed too

- kNN linking
— ..., k nearest neighbors are brushed
Interaction: misc

- + and − changes the alpha transparency

- PageDown and PageUp navigates through brush history

- ...
Painting

• qtpaint
 – low-level plotting functions, e.g. qdrawCircle(), qdrawPolygon(), ...
 – graphics layers
Examples: plots in cranvas now, and what’s new

- histogram (and spine plot): change binwidth with ↑ and ↓; shift bins with ← and →
- density plot: similar to histogram
- bar plot: application to missing value plot
- scatter plot: change size of points with ↑ and ↓
• boxplot: also show small boxplots for brushed observations inside original boxplots (not actually new)

• mosaic plot: dynamically change variables in the plot and layout

• parallel coordinates plot: rearrange order of variables (not new); show data ranges

• map: also cartograms

• time series plot: many, many new features (as a result of GSoC project)
Examples

- US 2012 presidential election
Limitations

• suffers from Qt flaws and bugs
 – mysterious clipping (aggressive: points clipped into halves; imprecise: no clipping even when points reach beyond boundary)

• Qt is big (in size) and installation of qtbase / qtpaint under Windows (64bit) can be difficult
Future plans

• automatic and *interactive* legend

• conditioning (faceting) like Trellis

• more types of plots (e.g. hexagons)

• a lot to learn from `ggplot2` and `iplots`
Acknowledgements

• Heike Hofmann, Di Cook, Xiaoyue Cheng, Tengfei Yin (current developers)

• Barret Schloerke, Marie Vendettuoli (former developers)

• Hadley Wickham, Michael Lawrence (all the hard work on infrastructure)

• Deborah Swayne
Questions & Comments?

• Testing and bug reports (https://github.com/ggobi/cranvas/issues) are welcome

• Thanks!

References

